

Moving Forward with a Green Economy Through the Development & Integration of Electric Vehicles

Ray Hoemsen, P. Eng.

Director, Applied Research & Commercialization Red River College

Dale Friesen, P. Eng.

Division Manager, Industrial & Commercial Solutions Division Manitoba Hydro

Toronto, Ontario – February 6, 2013

Overview

- Overview of College EV Engagement
- Manitoba EV Initiatives
 - EV Road Map
 - EV Demonstrations
 - EV Advisory Committee
- Electric Battery Transit Bus
- Impacts & Results

CLEANTECH in Transportation

- Fuel efficiency, renewable fuels, and cold weather operation for vehicle technology
 - Bio-diesel, EVs and PHEVs, hydrogen, solar
 - Prototyping, testing and evaluation, demonstrations
- Research infrastructure (ATEC and CARSI)
- Electric bus: battery, not trolley (\$3M)
- Electric Vehicle Technology & Education Centre (EVTEC)
- Participation in numerous public advisory bodies

Past ATEC-Related Projects

- 2005: Hybrid Hydrogen Internal Combustion Engine (HHICE) transit bus cold-weather evaluation
- 2005 and 2008: Red River Raycer solar car
- 2006: Hydrogen Fuel Cell transit bus demonstration
- 2007 and 2010: Integrated engine/transmission intercity MCI D4500 and J4500 bus prototypes
- 2008-11: Plug-In Hybrid Vehicle cold-weather conversion/ modifications, demonstration and monitoring
- 2009: Electric Vehicle Opportunities Report with EMC for IRAP

Manitoba Electric Vehicle Initiatives

- EV Road Map (2011)
- PHEV/EV Demonstrations (since 2009)
- EV Advisory Committee (2011-12)
- EVTEC (established 2011)
 - Manitoba Electric Transit Bus Project
 - New Flyer Industries SDTC small fleet battery electric transit bus demonstration
 - MHI battery pack integration

http://www.manitoba.ca/iem/energy/transportation/index.html

Manitoba EV Road Map

Primary Actions

- Demonstration partnerships
- Electric Vehicle Advisory Committee

EVTEC Electric Vehicle Technology & Education
 Centre @ Red River College

Manitoba EV Demonstrations

- 3-year PHEV Demonstration completed in 2012
- On-going demonstrations with Manitoba
 - Chevrolet Volt
 - Mitsubishi iMiEV (two European versions)
 - One unit now at Red River College
 - Nissan LEAF
- Centre for Emerging Renewable Energy
 - Administrates demos on behalf of Manitoba
 - Final reports publicly available

MB EV Advisory Committee

- Mandate to provide recommendations on the best ways to speed adoption of EVs
- Realizing the Potential of Electric Vehicles in Manitoba released June 2012
 - Information and education
 - Must be accurate/comprehensive & address the value case
 - Infrastructure good start, but need to
 - upgrade for code compliance & provide secondary charge points
 - Incentives to address price differentials

Report Endorsed

- Some recommendations implemented
- Low-cost electricity will offset some capital costs

EVTEC Electric Vehicle Technology & Education Centre

- Demonstration and public education site for all-electric and plug-in hybrid-electric vehicles
- Provincial support based on RRC's track record of applied research and demonstrations in advanced transportation
- Mission:
 - Support electric vehicle innovation in Manitoba's transportation sector
 - Enhance electric vehicle education at RRC and in the region
 - Increase public awareness of electric vehicle technology

Electric Vehicle Impacts

Infrastructure Overview

- 500,000+ Level 1 charge points in Manitoba
 - Winter is cold, all vehicles have block heaters
 - Private/public places will need to accommodate EVs
- Bio-diesel for auxiliary power (winter heating)
- Battery repurposing/end-of-life (still @ 80% capacity)

Education

Operators and service personnel training

Manitoba Electric Bus Project

- Project Partners New Flyer Industries (manufacturer), Province of Manitoba (government), Mitsubishi Heavy Industries (batteries), Red River College (education) and Manitoba Hydro (electric utility)
- Mandate to develop a commercial all-electric transit bus prototype
- Initial phase \$3.0 Million in funding provided by project partners

Project Expanded to Include Multi-Year Demonstration

- Expanded scope to include four additional electric buses for four year demonstration in Winnipeg, including Government of Canada (SDTC) and Winnipeg Transit Authority as additional project partners
- Demonstrate the feasibility of electric transit buses in cold weather climates and provide further validation of business case
- Project funding expanded to \$10.0 Million including SDTC funding

Anticipated Project Benefits

Near Zero Emissions from Electric Bus

Typical greenhouse gas emissions

• Battery-Based Electric 2 tonnes (renewable supply)

• Diesel-Electric Hybrid 108 tonnes

• Diesel 162 tonnes

Assurance of Long-Term Fuel Supply

- Eliminate dependency on finite domestic/foreign oil supply
- Long term price stability and cost certainty

Overall Efficiency Improvements

- Electrification of ancillary vehicle accessories
- Enhanced drive-train efficiency

Associated Benefits

Enhanced reliability and longevity with lower maintenance costs

Fuel Supply of the Future

#

Diesel fuel is trending to double in price over the next 12 years

Electricity is trending towards a 35 percent increase over the next 12 years

Life Cycle Fuel Costs (12 years)

Today's Economy

- Diesel Option
 - Consumption 62 litres/100 km
 - Energy cost \$1.00 per litre
 - Life cycle cost \$485,000
- Electric Option
 - Consumption 155 kWh/100 km
 - Energy Cost \$0.10 per kWh
 - Life cycle cost \$121,000
- Life Cycle Fuel Savings
 - \$364,000 (\$30,000 per year)

Tomorrow's Economy

- Diesel Fuel Option
 - Consumption 62 litres/100 km
 - Fuel cost \$1.50 per litre
 - Life cycle cost \$725,000
- Electric Option
 - Consumption 155 kWh/100 km
 - Energy cost \$0.12 per kWh
 - Life cycle cost \$145,000
- Life Cycle Fuel Savings
 - \$580,000 (\$48,000 per year)

Life Cycle Value Proposition

Reduced Operating and Maintenance Costs

New Flyer Industries Overview

Founded and Headquartered in Winnipeg, Manitoba

- Manufacturing plants in Manitoba and Minnesota
- Fabrication plant in Indiana, Service center in Ontario
- Parts distribution centers in Manitoba, Ontario, Kentucky and California
- New product development center in Manitoba
- Compliant with "Buy America" and "Canadian Content" mandates

Market Leader in Technology and Innovation

- Over 32,500 buses delivered, Over 24,000 are still in operation
- Lengths ranging from 35 ft, 40 ft and 60 ft, articulating, low-floor buses
- Diverse fuel and propulsion options, including clean diesel, electric-diesel hybrid, electric trolley and compressed natural gas, liquefied natural gas, hydrogen fuel cell, and all-electric prototype (delivered)

Focused on being an Employer of Choice

- Over 2,200 employees, Stable labor relations with CAW (MB) and CWA (MN)
- Publically traded on TXS: FNI, NFI.BU.U

Leadership & Innovation

Compressed Natural Gas 1994

Diesel Electric-Hybrid 1998

Next Gen Electric Trolley 2001

Articulated Diesel-Electric 2002

Hydrogen Fuel Cell Fleet 2010

Advanced Xcelsior Platform 2010

Transit Bus Industry's First Low Floor Buses in 1988

Path to an All-Electric Platform

Series-Hybrid Architecture

All-Electric Architecture

All-Electric Concept is Less Complex than Previous Series or Parallel Hybrid Designs

Establishing the Goal Posts

Test Data and Industry Experience

- 125 kWh/100 km (no air conditioning) spring / fall seasons
- 185 kWh/100 km (full air conditioning) summer season
- 310 kWh/100 km (full heating) winter season

Battery Storage Versus Range/Time and Life

- 100 kWh capacity (10 to 20 minute rapid charge)
 - 80% usage (90 10 SOC) 25 65 km, 1.0 3.0 hrs, 1000 2600 cycles
 - 50% usage (80 30 SOC) 15 40 km, 0.75 2.0 hrs, 1600 4300 cycles
- 200 kWh capacity (20 to 40 minute rapid charge)
 - 80% usage (90 10 SOC) 50 125 km, 2.5 6.0 hrs, 500 1300 cycles
 - 50% usage (80 30 SOC) 20 80 km, 1.5 4.0 hrs, 800 3250 cycles
- 300 kWh capacity (30 to 80 minute rapid charge)
 - 80% usage (90 10 SOC) 75 190 km, 3.5 9.5 hrs, 350 875 cycles
 - 50% usage (80 30 SOC) 50 120 km, 2.5 6.0 hrs, 550 1300 cycles

Desired Battery Life

- Six to eight years (80 percent of capacity)
- One change-out over expected life of bus (12 years)

Performance Variables

Useable On-Board Battery Storage Capacity

- Desired battery life (6 to 8 years), Thermal management
 - 90 10 percent SOC (maximum condition)
 - 80 30 percent SOC (more reasonable condition)
- Emerging battery technologies (density, cost)

Energy Consumption

- Topography (hills, prairies, winding, straight)
- Duty cycle (stop/start frequency, average speed, etc)
- Climate (average temperatures, peak temperatures)
- Traffic volatility (average speed, stop/start variance)

Charging System Characteristics

- Available charging capacity (volts, amps, kilowatts)
- Battery characteristics (thermal degradation, cooling)
- Acceptable charge rate (1C, 2C, 3C, ?C)
- Opportunity charging (regenerative braking, intermittent charging)

Transit Authority Considerations

Route Considerations

Length of route, frequency of stops, charging opportunities

Charging Strategy Considerations

- Charging on route = smaller battery pack
 - Effectively enables indefinite stay on route
- Charging at garage = larger battery pack
 - Multiple bus charging capacity required
 - Impacts servicing infrastructure requirements
- Driver education/behavior impacts energy conservation
 - Behavior feedback related to energy performance

Effective Solutions

 Require balanced consideration of route requirements and charging strategy to provide cost-effective solutions

Manitoba Electric Bus Prototype

Functional Prototype Unveiled in June 2012

Xcelsior Electric XE40 Prototype

• Electric Bus Platform

- Platform common to New Flyer diesel, diesel-hybrid, hydrogen and natural gas (compressed, liquefied)
- Proven design, common parts, service and support training
- Chassis already tested to standard industrial criteria for durability and life (6X Altoona Durability Test)

Advanced Performance

- Energy-efficient electric permanent magnet traction motor
- Air-cooled lithium-ion batteries with 120 kWh on-board storage capacity
- Optional bio-diesel heater for locations with cold winter climates
- Comparable weight to comparable diesel-electric hybrid models

Xcelsior XE40 Overview

Siemens Drive System

Permanent Magnet Traction Motor

Prototype Energy Performance

Phase One - Prototype Battery Configuration

- 120 kWh lithium-ion battery consisting of eight(8) 15 kWh modules
- Air-cooled battery configuration in a controlled ambient temperature

In-Field Prototype Operating Performance

- Energy Consumption (operation only no HVAC)
 - Average consumption of 133 kWh/100 km
- HVAC Consumption (test chamber)
 - 32 45 kWh/100 km at 35 C ambient
 - 125 250 kWh/100 km at -30 C ambient
- Sound (noise) output
 - Idle (all systems operating) 50 dBA (background)
 - Idle (compressor operating) 56 dBA
 - Full-throttle acceleration 61 dBA

Winter Energy Performance

Energy Requirement for Winter Heating

- Electric heating can drive total energy consumption upwards to the range of 300 – 400 kWh/100 km
- High winter consumption significantly limits available range and increases requirement for charging frequency
- Greater on-board storage increases battery costs
- Higher charging frequencies decrease battery life

Alternative Heating Options

- Evaluating the use of catalytic diesel or bio-diesel heaters with a thermal efficiency of 85 – 90 percent
- Improved heating efficiency relative to electric heat using coal or natural gas-fired generation, converted through a battery-based onboard storage system
- Regulator acceptance required to maintain zero-emission status

High Capacity Charging Systems

Evaluating a Dual Module Charger Configuration

- Two(2) module configuration with parallel output capability
- Dual module output targets outputs in the range of 300 500 kW
- Automated module isolation in case of failure (charge at half output)
- Available with five(5) year warranty and 8 hour service response

Electric Utility Friendly Outdoor Enclosures

- Integrated utility termination and metering enclosure
- Bottom entry for utility supply and output cables
- Designed for curb-side installation in a single-footprint
- Installation using standard utility methods and practices
- Potential to integrate rapid charge capability for passenger vehicles

Enhanced Safety and Wireless Communication

- Integrated fault and isolation detection for enhanced safety
- Seamless handshake and communication with Battery System Controller

Overhead Rapid Charging Dock

Overhead Charging Dock for Rapid Charging

- Automated rooftop interface engages charging dock
- Quick and safe connect and disconnect capability
- Easy drive-through ingress/egress for rapid charging
- Facilitates rapid in-route high-rate charging

Low Capacity Charging System

Configured for Over-Night and In-Shop Charging

- Three-phase AC, 100 kW input via service plug
- Fully isolated supply to AC charging station/on-board charger

Integrated Load Management System

- Modulated output allows for load management
- Integrated charging controller manages multi-point charging

Monitoring and Safety Features

- Integrated consumption metering
- Continuous fault and isolation monitoring
- Easily accessible emergency stops

Ease of Configuration and Use

- Easy access, color touch screen monitors
- Status indicators communicate charging status
- Network capable with pre-programmed charging options

SDTC Project Considerations

Construction of Four(4) Additional Electric Buses

- Four year demonstration under regular transit operating conditions
- Four season operation under full-route conditions

Enhanced Battery Performance

- Evaluate battery chemistry and the associated impacts/benefits
 - energy density, power density, cost, cycle life, temperature range
- Examine battery cooling methodology
 - air-cooled versus liquid-cooled configurations and associated systems
- Enhance capability to predict battery degradation
 - energy storage capability degrades 20 25 percent at end-of-life
 - explore opportunities for batter re-purposing including intermittent power storage, load balancing, backup power

Examine Opportunities for Transit Authorities

- Route planning to maximize electric bus efficiency and utilization
- Optimize relationship between charging strategy and on-board storage
- Optimize electric bus to charger ratios (reduce charging costs)
- Additional passenger vehicle charging options

Battery Pack Integration

Role of Red River College (EVTEC)

- Assembly and preparation of batteries for prototypes
- Develop charging infrastructure (with Manitoba Hydro)
- Storage, minor maintenance and troubleshooting of prototype
- Monitoring and evaluation of batteries during field tests

Battery Pack Integration into Prototypes

- RRC (with MHI guidance) assembled lithium ion battery packs for original Xcelsior electric battery bus prototype
- Design, analysis, prototyping, testing, monitoring & troubleshooting of lithium ion battery packs
- Multi-disciplinary approach with Mitsubishi Heavy Industries (battery) and New Flyer Industries (bus)

Summary

Real-World Cold Weather Experience

Passenger and transit electric vehicle design and operation in extreme (especially cold) climatic conditions

Impact of Electric Vehicles

- Multi-partner approach examines infrastructure, education and implementation of electric vehicles
- Evaluate the commercial model for an electric transit solution roll-out

Improving the Environment

 Electric vehicles operating on clean renewable electricity can help to improve our environment by reducing GHGs, while reducing costs and improving performance

Thank You

Dale Friesen, P. Eng.

Division Manager, Industrial & Commercial Solutions Customer Care & Marketing Manitoba Hydro

Winnipeg, MB

Voice: (204) 360-4928

E-Mail: drfriesen@hydro.mb.ca

Web: www.hydro.mb.ca

Ray Hoemsen, M.Sc., FEC, P. Eng.

Director, Applied Research & Commercialization

Red River College

Winnipeg, MB

Voice: (204) 632-2523 Mobile: (204) 799-6987 Fax: (204) 633-3079

E-mail: Rhoemsen@rrc.ca

Web: www.rrc.ca/appliedresearch

Blog: http://blogs.rrc.ca/ar/ Twitter: @RRCResearch

