Advanced Logistics Transport System (ALTRaS) Research Project

ONozomu Hatakeyama, Akira Miyamoto, Hidetoshi Matsuki,
Takahiro Suzuki and Fumihiko Hasegawa
New Industry Creation Hatchery Center (NICHe), Tohoku University

"Sendai" in Tohoku Region

2

October 1, 2019 Vehicle Technology International Conference

About NICHe

Partnership between Industry and University

Established in 1998

Planning & Management of Collaborative Research Projects to Provide Solutions for Industry & Society

20 Research Projects
JPY 2.9B Budget with 232 staff, including 156 Researchers,

as of Oct. 1st, 2013

NICHe Guideline for Projects

- 1. World Leading Research
- 2. Predetermined Period, 3 to 5 Years Typical
- 3. Needs Oriented & Large-Sized Project with Industry & Government
- 4. External Funding

3

October 1, 2019

NICHe, Tohoku Univerisity Advanced Logistics Transp

Advanced Logistics Transport System Research Project

Subject of Project: Proposal of Regional Transport System LCC Local Airport **Implementation JR Station** Regional Road **Highway** (())On-Demand transport **Transport** Road Station 3rd Sector Railway JR. BRT/ART of **Support Near-Future Smart IC Local Bus Highway Bus** Traffic System by Community Small **Local City Town** Car-Share **Station** Center **Terminal Applying Ward** Subway etc. Watching Mega-Solar City's **Community Bus** Transportation Wind farm Station Disaster Contribution to Hydrogen **Prevention** Automated **Station** Driving Aging, Population **Storage Energy** Multi-mode (Li-ion Secondary **Drain Society Traffic Monitoring Battery** Industry & Mnagement Creation **Large Cargo** Increase of Local Distribution **Regional Needs Satisfied** (Regional ITS Center) (FCV, Platoon) **New Mobility Production** Industry and Trade Super Express Flow of Vehicles First-one-mile

Vehicle Technology International Conference

Aobayama New Campus & Subway

Up to 10 thousands Commuter, Only One Subway Station No Feeder Transportation in New & Existing Aobayama Campus

Demonstration Phase	Demonstration Area
2013FY ~ Vehicle Development	Campus Mall Zone, Aobayama New Campus (A)
Pilot Study 1	Aobayama New Campus (A) & East Zone (B) Determine the best way to the Mobility in Aobayama
Pilot Study 2	Aobayama Station (C), Kawauchi Station (D) and Other Campuses

Advanced Technology Field Practice Special Ward:

"Creation of Aobayama Campus Next-Generation Advanced Mobility System Practice Field" => Authorized as "Sendai Social Innovation Creation Special Ward" (2015)

Next Day of Big Earthquake on March 11, 2011

Laboratory

Neighborhood of university

Resilience of local industries was required

New Industry Creation Hatchery Center (NICHe), **Tohoku University**

x1000r/min

Aobayama Campus Field Experiment

- Visualization of campus bus & EV locations
- On-demand traffic information system
- Auto allocation of shared mobility Evacuation guidance in emergency

Social Implementation to

Tohoku Disaster Area

For Social Contribution

Advanced Logistics **Transport System (ALTRas)** Research Project

Prototype Evaluation Base for Next-Generation Vehicles

Miyagi Reconstruction Park **NICHe TAGAJYO BASE**

> In the Sony Corporation Sendai Technology

- Early operation restarting of the suffered companies
- Creation of new industry and employments by advanced technologies

Cross-cutting Integration for Advanced Technology Development

- EV Bus Wireless Charging
- In-Wheel Motor
- Head-Up Display
- Omnidirectional Camera

- Micro EV
- Autonomous Vehicle
- Lithium-ion Capacitor EV
- Dual-Mode EV (for emergency)

- Virtual Space - Driver Sensing

Region-based Collaboration of Industry-Academia-Government

- Toyota Motor East Japan, Inc.

- Kudo Electronics Corporation

Motor, Power Electronics

- Hikichiseiko Co.,Ltd.

Wireless Charging Station

- Murakami Co.,Ltd.

EV Design & Manufacturing under collaboration with Ministries, Prefectures, Cities & Towns

Sustainable transport system supplementing each other

- Resilient multi-mode system for dual-use (normal/disaster) - Advanced technologies to revitalize local community

Distribute to coastal, mountainous, island & remote resions

Advanced Logistics Transport System (ALTRaS) Research Project

Development of Wireless Power Transfer

Demonstration experiment of the wireless charge

Outline of Wireless Charge

Electricity transmission by the electromagnetic induction phenomenon

Automated Driving Technologies in Tohoku University

- Automated Driving Car by conversion of Micro EV (for region)
- SLAM (Simultaneous Localization and Mapping) technology
 - · LIDAR, Camera, RTK-GPS, Odometry

LIDAR

360 degree camera

Automated Driving on public road

- Sensing technology in hard condition (Fire, Fog, Rain, Snow, etc.)
- Practice Field in Special Ward
 - including public road
- Social implementation of automated driving with local needs
 - Hard weather condition
 - **Unmanned vehicle for carrying**
 - Safety car for aged or diseased person

Demo Course in Arahama on Mar. 27

(10-15km/h on 350m course)

Driving Simulator (DS)

Virtual Traffic Experiment Environment for Demo, Evaluation & Verification

Evacuation of automobiles from tsunami: Proposal of one-way traffic and change of central lane during disaster and proposal of evacuation training

Prevention of Reverse Run* (Kahoku Interchange)

Before (2015)

After (2016.12)

 $\stackrel{\frown}{}$

DS Exp. (2016.1)

Implementation

*Number of reverse run found 259 in 2016

Press Release

The press release itself is a part of reverse run-prevention by making the impression of the countermeasures to many people

EV cars converted by Tohoku University

Automated Wireless Charge Li-ion Battery Motion Control For Two People Public Road

EV Bus COMS for two COMS for supply Copen EV (MODI) (Toyota Auto Body) (DAIHATSU)

PIUS converted cars: MODI(Ichinoseki city) Original

NMC: Ni-Mn-Co(Ternarry) LMO: LiMn₂O₄ (Spinel)

	Ternarry NMC Cathode	Mn 系正極
Crystalline Structure	Li	Li
	Two-Dimensional Li-DiffusionUnstable for Li-ion Over-removal⇒ Thermorunawy	 Three-Dimensional Li-Diffusion ⇒ Advantage for High Power Complete Extraction of Li-ion
Cathode- Anode(Carbon) Balance	Li-ion Capacity of Cathode Capacity of Anode ⇒ Cell Management Required	Li-ion Capacity of Cathode ⇒ Simplification of Protection Circuit
Reaction with H ₂ O	0	× ⇒ No Dry Room Required

LMO vs. NMC : Output Characteristics

Capacity is larger for the LMO system for high current region (>2C)

Advantage of LiB produced by Tohoku Univ.

- ⇒ LMO cathode is structural stable and <u>free thermorunaway</u> ⇒ Safety
- \Rightarrow Dry room free results in facility cost to $1/10 \Rightarrow$ Production by Local Company
- ⇒ <u>Provided to regional medical institution</u> ⇒ Disaster + Daily (Secure)

 \Rightarrow Status monitoring platform \rightarrow Network of individual clinics, pharmacies, etc.

Medical+Energy+Traffic Total Netwark ⇒ New Lifestyle and Values

Resilient Society

(A society with high resistance to unpredictable natural disaster etc.)

