

ADOPTING COMPOSITE MATERIALS TO IMPROVE VEHICLE SUSTAINABILITY

Vehicle Technology International Conference Oct. 1, 2019

composites innovation.ca

Outline

- CIC Introduction
- What are Composites?
- Why Composites?
- Composites in the Vehicle Industry
- Case Study Heavy-Duty Truck Floor
- Case Study Vehicle Tub
- Case Study Automotive Interiors
- Case Study Tractor Hood
- Conclusion

CIC Introduction

CIC supports the entire product development process through:

- Feasibility Assessments
- Design
- Analysis (FEA)
- Material & Process Development
- Testing
- Prototyping Tooling & Products
- Engineering Support for Manufacturing

CIC Introduction

We work with our clients to:

- Reduce product development time and cost
- Manage risk
- Increase product performance
- Develop products for new markets
- Enhance product value

Materials created by the combination of **two or more materials**, on a macroscopic scale, to form a **new material with enhanced properties** superior to those of the individual constituents alone

What are Composites?

Fibres

Provide strength and stiffness Examples:

Carbon fibre, fibreglass, kevlar (aramid fibres), natural fibres

Resin

Protects and transfers load between fibres

(Similar to a glue; it holds the composite together)

Examples:

Polyester, vinyl ester, epoxy, polyurethane

Composite

When you combine fibres with resin you create a composite

A composite combines two or more materials to make something that has better performance than the individual parts alone

Why Composites?

- Strong but lightweight components
- Allows complex shapes for design and manufacturing flexibility
- Parts consolidation
- Innovative / attractive designs
- Corrosion resistant
- Longer lifespan

Why Composites for Sustainability?

- Various studies estimate that every 10 % reduction in vehicle weight results in 5 to 7% fuel savings
- Lighter vehicles allow for smaller engines without compromising performance
- Lighter vehicles helps to enable electric vehicle technologies
- Natural fibres come from a renewable resource and replace petroleum-based fibres

Composites in the Vehicle Industry

Types of vehicles that use composite materials include:

- Buses
- Trains
- Heavy-duty trucks
- Agricultural equipment
- Recreational vehicles
- Cars

Composite components include:

- Exterior panels
- Floors
- Roofs
- Interior panels and headliners
- Vehicle tubs

Composites in the Vehicle Industry

Common fibres include:

- Fibreglass
- Carbon fibre (typically for high-performance, low volume)
- Natural fibres

Common resins include:

- Thermosets including polyester and vinyl ester
- Thermoplastics including polyurethane and polypropylene

Common manufacturing processes include:

- Hand layup
- Infusion
- Pultrusion
- Compression moulding

Dry freight van trailer

14.63 m (48 ft) long Great Dane P-Series haul trailer

Prucz, J. C., Shoukry, S. N., William, G. W. & Shoukry, M. S., 2013. Lightweight composite materials for heavy duty vehicles. [Online] Available at: https://www.osti.gov/scitech/

Original design

- 38mm thick hardwood
- Supported by steel I-beams

Prucz, J. C., Shoukry, S. N., William, G. W. & Shoukry, M. S., 2013. Lightweight composite materials for heavy duty vehicles. [Online] Available at: https://www.osti.gov/scitech/

Proposed design

- Sandwich panel with composite face sheets (fibreglass or carbon fibre)
- Aluminum extrusions in the core (replace the steel I-beams)

Paper honeycomb ribs included as filler between aluminum over usions

extrusions

Proposed design

CARBONPLATE

- Composite designs resulted in reducing the mass by more than 50%
- Cost of carbon design was 4.3 times greater than the original
- Cost of fibreglass design was comparable to the original
- Estimated fuel savings of approximately 7%

			Fuel Used to
			Transport One Ton
	Mass	Cost	of Cargo Over 1000
			km
	kg/m^2	m^2	(Liter/ton×1000 km)
Current Floor Design	76.23	126.4	20.053 (0%)
Carbonplate-4	34.18	550	18.584 (7.3%)
Fiberplate-4	35.2	120	18.617 (7.1%)

Westward GO-4 Vehicle

 Three wheel vehicle commonly used by parking patrols due to its maneuverability

Original design

- Metallic tubular frame
- Sheet metal and plastic panels
- Welded structure

Proposed design

Four composite components to make up the vehicle tub

- Weight savings = 13%
- Beneficial when moving to an electric motor
- Additional benefit of reducing part count from 19 to 8

Case Study – Automotive Interiors

- Canadian hemp and flax are primarily grown for their seeds
- Stalk is waste product
- Fibres can be used to replace fibreglass

Case Study – Automotive Interiors

- Typically nonwovens although some wovens are used
- Interior components
 - Wheelhouse liners
 - Headliners
 - Door panels
 - Boot linings
 - Centre consoles
 - Acoustic panels
- Typical process is low pressure compression moulding

Case Study – Automotive Interiors

Major automotive OEMs are adopting due to benefits including:

- Weight savings
- Recyclability
- Replaces petroleum-based fibres with a renewable resource

Buhler Industries Versatile tractor components

- Tractor hood, fan shroud, and fenders
- Original design combination of fibreglass mats
- Proposed design includes non-woven hemp and agave fibres

Hood

Side Shield

Rear and Crossover Fenders

Fan Shroud

BioFibre Tractor Components

Tractor Hood / Side Shield Assembly

Ply	Zone	Material	Thickness (mm)
1		EM0015 Glass CSM	0.38
2	Side	Hemp-Agave Nonwoven Mat	2.00
3	Shields	Hemp-Agave Nonwoven Mat	2.00
4		EM0015 Glass CSM	0.38
		Total	4.76
1	A Side	EM0015 Glass CSM	0.38
2		CORECORK NL20	2.00
3	Hood	Hemp-Agave Nonwoven Mat	2.00
4		Hemp-Agave Nonwoven Mat	2.00
5	B side	EM0015 Glass CSM	0.38
		Total	6.76

Fan Shroud, Rear Fender and Cross-Over Fenders

Ply	Material	Thickness (mm)
1	EM0015 Glass CSM	0.38
2	Nonwoven Hemp-Agave	2.00
3	Nonwoven Hemp-Agave	2.00
4	EM0015 Glass CSM	0.38
	Total	4.76

Manufactured using RTM-Light process

- Tooling was developed to accommodate production of biofibre parts at Eastside Composites
- Nonwoven biofibre mat acted as infusion media for improved resin flow between the glass plies

In-field Performance Testing

- Rigorous bump-track
- Used during harvest season in both hot (Arizona) and cold (Manitoba) climates
- Parts remained intact and performed well in both hot and cold temperatures, under vibration, and in humid and moist conditions.

Future Work

- Development of biofibre mat for improved processing
- Fibre resin interface characterization and optimization
- Environmental and long term durability assessment
- Bio-based resin for composite processing
 - Fibre preparation/sizing (coatings) for processing,
 bonding, fire retardancy, minimize moisture uptake
 - Mat architecture to meet mechanical and processing requirements and to compete with other fibreglass forms – stitchmats, fabrics and wovens

Conclusion

- Composites usage in the vehicle industry continues to increase
- One of the drivers is the need to reduce vehicle weight due to more stringent fuel efficiency standards
- Natural fibres are an emerging material that shows promise for reducing the reliance on petroleum-based fibres

Questions?

Contact Info

Alastair Komus Lead Engineer, Analysis

akomus@compositesinnovation.ca 204-262-3400 ext. 250 www.compositesinnovation.ca